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(1.) In the third sentence of Example 2.10, the phrase “Now observe that a hyper-
bolic Riemann surface of finite type” should read “Now observe that a hyperbolic
Riemann surface of finite type of genus ≥ 1”.

(2.) With regard to the proof of Corollary 3.11:

(i) In the first line of the proof, it should be stipulated that the set Σ be
nonempty.

(ii) The phrase “as in (ii)” in line 2 of observation (iv) should read “as in
(iii)”.

(iii) A more detailed version of the argument used to verify observation (iv) is
given in [AbsTopII], Corollary 2.11.

(3.) In the discussion of the “pro-Σ version” of Corollary 3.11 in Remark 3.11.1,

one should assume that pα, pβ ∈ Σ.

In fact, this assumption is, in some sense, implicit in the phraseology that appears
in the first two lines of Remark 3.11.1, but it should have been stated explicitly.

(4.) Note that in Theorem 5.4, the case where A is trivial [i.e., is equal to the
anabelioid associated to the trivial group {1}] is not excluded. Thus, suppose that,
in Theorem 5.4, we assume further that A is trivial. Then let us observe that this
implies that the underlying graph of G [orH] consists of a single vertex and no edges.
[Indeed, if the underlying graph of G has at least one edge, then since G is assumed
to be totally elevated, it follows from the assumption that G is totally arithmetically
estranged [cf. Definition 5.3, (ii)] that Πtemp

G admits a closed subgroup that fails

to be arithmetically ample, hence that ΠA = {1} contains a closed subgroup which

is not open — a contradiction.] Thus, Πtemp

G itself is a verticial subgroup of Πtemp

G ,

hence compact. In particular, Πtemp

G is the unique maximal compact subgroup of

Πtemp

G , so assertions (i), (ii), and (iii) of Theorem 5.4 are, in essence, vacuous.
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(5.) In the line 2 of Example 5.6, the phrase “Also, Suppose...” should read “Also,
suppose...”. In lines 7–8 of Example 5.6, one should also assume that Mi was
chosen so that the resulting Galois action on the dual semi-graph with compact
structure of the special fiber of the stable model is trivial [i.e., so as to ensure
that the assumption of Theorem 5.4 concerning switching the branches of edges is
satisfied].

(6.) Some readers may find the argument given in the third and fourth paragraphs
of the proof of Theorem 3.7, (iii), to be a bit confusing in its brevity. A more
detailed argument may be given as follows. For i ∈ I, let us write

Vi, Ei

for the sets of vertices and closed edges, respectively, of Gi,∞ that are fixed by the
action of H. Thus, for i ≥ j ∈ I, we have natural maps Vi → Vj , Ei → Ej ; let us
write

Ej,i ⊆ Ej

for the image of Ei in Ej . Thus, for i1, i2 ∈ I such that i1 ≥ i2, we have Ej,i1 ⊆
Ej,i2 ⊆ Ej . Also, we recall that, by the argument given in the second paragraph
of the proof, we have #Vi ≥ 1 [where we use the notation “#” to denote the
cardinality of a set], for all i ∈ I. For simplicity, in the following, we assume that
the semi-graph Gi is untangled, for all i ∈ I. Now:

(a) Suppose that for some cofinal subset J ⊆ I, we have #Vj = 1, for all
j ∈ J . Then the unique elements of the Vj , for j ∈ J , form a compatible
system of vertices fixed by H. Thus, we conclude that H is contained in
some verticial subgroup of πtemp

1 (G).

(b) Suppose that for some cofinal subset J ⊆ I, we have #Vj ≥ 2, for all
j ∈ J . Then it follows from Lemma 1.8, (ii), (b), that #Ej ≥ 1, for all
j ∈ J . Now I claim that for each j ∈ J , the following condition holds:

(∗j) there exists an i ∈ J such that i ≥ j and #Ej,i = 1.

Indeed, suppose that (∗j) fails to hold. Then for each i ≥ j in J , there
exists a pair of distinct edges ei, e

′
i ∈ Ei whose respective images ej,i, e

′
j,i ∈

Ej are distinct. By Lemma 1.8, (ii), (b), we may assume without loss of
the generality that the pair {ei, e′i}, hence also the pair {ej,i, e′j,i}, forms a
subjoint. Then since Gj is untangled, it follows that the respective images
fj,i, f

′
j,i of ej,i, e

′
j,i inGj also form a subjoint. Write fi, f

′
i for the respective

images of ei, e
′
i in Gi. Thus, it follows from the fact that the pair (fj,i, f

′
j,i)

forms a subjoint (of Gj) that the pair (fi, f
′
i) forms a subjoint (of Gi).

Moreover, for some cofinal subset J∗ ⊆ J , the subjoints (fi, f
′
i), where

i ∈ J∗, converge, in the profinite topology, to some profinite subjoint. As
discussed in the third paragraph, this leads to a contradiction, in light of
our assumption that G is totally estranged. This completes the proof of
the claim. Now it follows from (∗j) that each of the nonempty sets Ej,i,
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for i, j ∈ J such that i is “sufficiently large” relative to j, is of cardinality
1. But this implies that each intersection

Ej,∞
def
=

⋂
i≥j

Ej,i

is of cardinality 1. Thus, the unique elements of the Ej,∞, for j ∈ J , form
a compatible system of closed edges fixed by H. In particular, we conclude
that H is contained in some edge-like subgroup, hence also in two distinct
verticial subgroups, of πtemp

1 (G).
(c) Now it follows formally from (a), (b) that H is always contained in some

verticial subgroup of πtemp
1 (G). If H is contained in three distinct verticial

subgroups, then it follows immediately from Lemma 1.8, (ii), (b), that one
obtains a contradiction to the condition (∗j) of (b). This completes the
proof of assertion (iii) of Theorem 3.7.

(7.) In Proposition 4.4, (ii), the notation “G” should read “G”.

(8.) In the context of Theorem 4.8, it should be observed that Gi is assumed to
be a graph [i.e., not an arbitrary semi-graph!] of anabelioids. Also, it should be
observed that it follows immediately from the assumption that Gi is totally aloof,
together with the definition of the category Loc(Gi,Γi), that the map induced on
branches of underlying semi-graphs by a locally trivial morphism of Loc(Gi,Γi) is
completely determined by the map induced [by the morphism under consideration]
on vertices of underlying semi-graphs.

(9.) The assertion stated in the second display of Remark 2.4.2 is false as stated.
[The automorphisms of the semi-graphs of anabelioids in Example 2.10 that arise
from “Dehn twists” constitute a well-known counterexample to this assertion.] This
assertion should be replaced by the following slightly modified version of this as-
sertion:

The isomorphism classes of the φv completely determine the isomorphism
class of each of the φe, as well as each isomorphism φb, up to composi-
tion with an automorphism of the composite 1-morphism of anabelioids
Ge → Hf → Hw that arises from an automorphism of the 1-morphism of
anabelioids Ge → Hf .

Also, in the discussion following this assertion [as well as the various places where
this discussion is applied, i.e., Remark 3.5.2; the second paragraph of §4; Definition
5.1, (iv)], it is necessary to assume further that the semi-graphs of anabelioids that
appear satisfy the condition that every edge abuts to at least one vertex.

(10.) The phrase “is Galois” at the end of the first sentence of the proof of Propo-
sition 3.2 should read “is a countable coproduct of Galois objects”.
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(11.) In the first sentence of Definition 3.5, (ii), the phrase “Suppose that” should
read “Suppose that each connected component of”; the phrase “splits the restriction
of” should read “splits the restriction of this connected component of”.

(12.) Certain pathologies occur in the theory of tempered fundamental groups if
one does not impose suitable countability hypotheses.

(i) In order to discuss these countability hypotheses, it will be convenient to
introduce some terminology as follows:

(T1) We shall say that a tempered group is Galois-countable if its topol-
ogy admits a countable basis. We shall say that a connected temperoid
is Galois-countable if it arises from a Galois-countable tempered group.
We shall say that a temperoid is Galois-countable if it arises from a col-
lection of Galois-countable connected temperoids. We shall say that a
connected quasi-temperoid is Galois-countable if it arises from a Galois-
countable connected temperoid. We shall say that a quasi-temperoid is
Galois-countable if it arises from a collection of Galois-countable connected
quasi-temperoids.

(T2) We shall say that a semi-graph of anabelioids G is Galois-countable if it
is countable, and, moreover, admits a countable collection of finite étale
coverings {Gi → G}i∈I such that for any finite étale covering H → G,
there exists an i ∈ I such that the base-changed covering H ×G Gi → Gi

splits over the constituent anabelioid associated to each component of [the
underlying semi-graph of] Gi.

(T3) We shall say that a semi-graph of anabelioids G is strictly coherent if it
is coherent [cf. Definition 2.3, (iii)], and, moreover, each of the profinite
groups associated to components c of [the underlying semi-graph of] G
[cf. the final sentence of Definition 2.3, (iii)] is topologically generated by
N generators, for some positive integer N that is independent of c. In
particular, it follows that if G is finite and coherent, then it is strictly
coherent.

(T4) One verifies immediately that every strictly coherent, countable semi-
graph of anabelioids is Galois-countable.

(T5) One verifies immediately that if, in Remark 3.2.1, one assumes in addi-
tion that the temperoid X is Galois-countable, then it follows that its as-
sociated tempered fundamental group πtemp

1 (X ) is well-defined and Galois-
countable.

(T6) One verifies immediately that if, in the discussion of the paragraph
preceding Proposition 3.6, one assumes in addition that the semi-graph
of anabelioids G is Galois-countable, then it follows that its associated
tempered fundamental group πtemp

1 (G) and temperoid Btemp(G) are well-
defined and Galois-countable.

Here, we note that, in (T5) and (T6), the Galois-countability assumption is nec-
essary in order to ensure that the index sets of “universal covering pro-objects”
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implicit in the definition of the tempered fundamental group may to be taken to
be countable. This countability of the index sets involved implies that the various
objects that constitute such a universal covering pro-object admit a compatible sys-
tem of basepoints, i.e., that the obstruction to the existence of such a compatible
system — which may be thought of as an element of a sort of “nonabelian R

1 lim←−”
— vanishes. In order to define the tempered fundamental group in an intrinsi-
cally meaningful fashion, it is necessary to know the existence of such a compatible
system of basepoints.

(ii) The effects of the omission of Galois-countability hypotheses in §3 on the
remainder of the present paper, as well as on subsequent papers of the author, may
be summarized as follows:

(E1) First of all, we observe that all topological subquotients of absolute Galois
groups of fields of countable cardinality are Galois-countable.

(E2) Also, we observe that if k is a field whose absolute Galois group is Galois-
countable, and U is a nonempty open subscheme of a connected proper
k-scheme X that arises as the underlying scheme of a log scheme that is
log smooth over k [where we regard Spec(k) as equipped with the trivial
log structure], and whose interior is equal to U , then the tamely ramified
arithmetic fundamental group of U [i.e., that arises by considering finite
étale coverings of U with tame ramification over the divisors that lie in
the complement of U in X] is itself Galois-countable [cf., e.g., [AbsTopI],
Proposition 2.2].

(E3) Next, we observe, with regard to Examples 2.10, 3.10, and 5.6, that
the tempered groups and temperoids that appear in these Examples are
Galois-countable [cf. (E1), (E2)], while the semi-graphs of anabelioids that
appear in these Examples are strictly coherent [cf. item (T3) of (i)], hence
[cf. item (T4) of (i)] Galois-countable. In particular, there is no effect on
the theory of objects discussed in these Examples.

(E4) It follows immediately from (E3) that there is no effect on §6.
(E5) It follows immediately from items (T3), (T4) of (i), together with the

assumptions of finiteness and coherence in the discussion of the paragraph
immediately preceding Definition 4.2, the assumption of coherence in Def-
inition 5.1, (i), and the assumption of Definition 5.1, (i), (d), that there
is no effect on §4, §5. [Here, we note that since the notion of a tempered
covering of a semi-graph of anabelioids is only defined in the case where
the semi-graph of anabelioids is countable, it is implicit in Proposition 5.2
and Definition 5.3 that the semi-graphs of anabelioids under consideration
are countable.]

(E6) There is no effect on §1, §2, or the Appendix, since tempered fundamental
groups are never discussed in §1, §2, or the Appendix.

(E7) In the Definitions/Propositions/Theorems/Corollaries numbered 3.2, 3.3,
3.4, 3.5, 3.6, 3.7, 3.8, 3.9, one must assume that all tempered groups, tem-
peroids, and semi-graphs of anabelioids that appear are Galois-countable.
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On the other hand, it follows immediately from (E1), (E2), and (E3) that
there is no effect on the remaining portions of §3.

(E8) In [QuCnf] and [FrdII], one must assume that all tempered groups and
[quasi-]temperoids that appear are Galois-countable.

(E9) There is no effect on any papers of the author other than the present
paper and the papers discussed in (E8).

(13.) In order to carry out the argument stated in the proof of Proposition 5.2,
(i), it is necessary to strengthen the conditions (c) and (d) of Definition 5.1, (i), as
follows. This strengthening of the conditions (c) and (d) of Definition 5.1, (i), has
no effect either on the remainder of the present paper or on subsequent papers of
the author. Suppose that G is as in Definition 5.1, (i). Then we begin by making
the following observation:

(O1) Suppose that G is finite. Then G admits a cofinal, countable collection
of connected finite étale Galois coverings {Gi → G}i∈I , each of which is
characteristic [i.e., any pull-back of the covering via an element of Aut(G)
is isomorphic to the original covering]. [For instance, one verifies immedi-
ately, by applying the finiteness and coherence of G, that such a collection
of coverings may be obtained by considering, for n a positive integer, the
composite of all connected finite étale Galois coverings of degree ≤ n.] We
may assume, without loss of generality, that this collection of coverings

arises from a projective system, which we denote by G̃. Thus, we obtain a
natural exact sequence

1 −→ Gal(G̃/G) −→ Aut(G̃/G) −→ Aut(G) −→ 1

— where we write “Aut(G̃/G)” for the group of pairs of compatible auto-

morphisms of G̃ and G.

This observation (O1) has the following immediate consequence:

(O2) Suppose that we are in the situation of (O1). Consider, for i ∈ I, the
finite index normal subgroup

Auti(G̃/G) ⊆ Aut(G̃/G)

of elements of Aut(G̃/G) that induce the identity automorphism on the
underlying semi-graph G

i of Gi, as well as on Gal(Gi/G). Then one verifies
immediately [from the definition of a semi-graph of anabelioids; cf. also

Proposition 2.5, (i)] that the intersection of the Auti(G̃/G), for i ∈ I, is

= {1}. Thus, the Auti(G̃/G), for i ∈ I, determine a natural profinite

topology on Aut(G̃/G) and hence also on the quotient Aut(G), which is

easily seen to be compatible with the profinite topology on Gal(G̃/G) and,
moreover, independent of the choice of G̃.
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The new version of the condition (c) of Definition 5.1, (i), that we wish to consider
is the following:

(cnew) The action of H on G is trivial; the resulting homomorphism H →
Aut(G[c]), where c ranges over the components [i.e., vertices and edges]
of G, is continuous [i.e., relative to the natural profinite group topology
defined in (O2) on Aut(G[c])].

It is immediate that (cnew) implies (c). Moreover, we observe in passing that:

(O3) In fact, since H is topologically finitely generated [cf. Definition 5.1,
(i), (a)], it holds [cf. [NS], Theorem 1.1] that every finite index subgroup
of H is open in H. Thus, the conditions (c) and (cnew) in fact hold
automatically.

The new version of the condition (d) of Definition 5.1, (i), that we wish to consider
is the following:

(dnew) There is a finite set C∗ of components [i.e., vertices and edges] of G

such that for every component c of G, there exists a c∗ ∈ C∗ and an
isomorphism of semi-graphs of anabelioids G[c] ∼→ G[c∗] that is compatible
with the action of H on both sides.

It is immediate that (dnew) implies (d). The reason that, in the context of the proof
of Proposition 5.2, (i), it is necessary to consider the stronger conditions (cnew) and
(dnew) is as follows. It suffices to show that, given a connected finite étale covering
G′ → G, after possibly replacing H by an open subgroup of H, the action of H on
G lifts to an action on G′ that satisfies the conditions of Definition 5.1, (i). Such
a lifting of the action of H on G to an action on the portion of G′ that lies over
the vertices of G follows in a straightforward manner from the original conditions
(a), (b), (c), and (d). On the other hand, in order to conclude that such a lifting is
[after possibly replacing H by an open subgroup of H] compatible with the gluing
conditions arising from the structure of G′ over the edges of G, it is necessary to
assume further that the “component-wise versions (cnew), (dnew)” of the original
“vertex-wise conditions (c), (d)” hold. This issue is closely related to the issue
discussed in (9.) above.

(14.) In Definition 2.4, (iii), the phrase “underlying graph” should read “underlying
semi-graph” (2 instances).

(15.) In the first sentence of the fourth paragraph of the discussion entitled “Curves”
in §0, the notation “Dg,r ⊆ Mg,r” should read “Dg,r ⊆ Cg,r”.
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